
CISC 3130 Exam 2 (Section TY9)

November 65, 2024

Name:

1

Question 1 (10 points)

Complete the allElementsEqualTo method of the following SinglyLinkedList class. The
method should return true if all elements are equal to e; otherwise, it should return false.
Assume that no element is null and that e is not null.

Additionally, state the big-Oh running time of your method.

public class SinglyLinkedList <E> {

private static class Node <E> {

E data;

Node <E> next;

}

private Node <E> head , tail;

private int size;

// Methods addFirst , addLast as usual (don’t write)

public boolean allElementsEqualTo(E e) {

}

}

Question 2 (8 points)

Suppose we have a SinglyLinkedList<E> class with the following methods: addFirst(e),
addLast(e), removeFirst(), removeLast(), getFirst(), and getLast().

Additionally, suppose we have a DoublyLinkedList<E> class with the same methods.
Assume each method behaves in the obvious manner and has the obvious running time.
Now, suppose we have the following interface:

public interface Queue <E> {

void add(E e); // aka enqueue(e)

E remove (); // aka dequeue ()

E peek();

}

2

We would like to implement the Queue interface, using a linked list to store the elements.
The table below contains eight proposed implementations. The table indicates what kind

of linked list is used to store the elements, and how the Queue methods are implemented
in terms of the linked list methods. For example, the top left empty cell represents an
implementation where the elements are stored in a SinglyLinkedList, add(e) calls addFirst(e),
remove() calls removeFirst(), and peek() calls getFirst().

For each proposed implementation, write “correct” if it is correct; otherwise, write “in-
correct.” An implementation is correct if each method produces the behavior expected by
users, regardless of how it works under the hood. For example, peek() should return the
least recently added element; we don’t care where it is stored.

Additionally, for each correct implementation, write “efficient” if its big-Oh running time
is efficient; otherwise, write “inefficient.” (We don’t care about the efficiency of incorrect
implementations.)

SinglyLinkedList DoublyLinkedList

add(e): addFirst(e), remove(): removeFirst(), peek(): getFirst()

add(e): addLast(e), remove(): removeLast(), peek(): getLast()

add(e): addLast(e), remove(): removeFirst(), peek(): getFirst()

add(e): addFirst(e), remove(): removeLast(), peek(): getLast()

Question 3 (8 points)

Use two stacks to evaluate the following infix expression. Follow the algorithm that was
covered in class. You will be graded on your tracing of the stacks, as well as on your final
result.

((33 - 1) / ((5 + (2 - 3)) * 4))

3

Question 4 (6 points)

Consider the following method:

public static void mystery(Deque <Integer > stack) {

Queue <Integer > queue = new LinkedList <>();

while (! stack.isEmpty ()) {

queue.add(stack.peek());

queue.add(stack.pop());

}

while (! queue.isEmpty ()) {

stack.push(queue.remove ());

}

while (! stack.isEmpty ()) {

System.out.print(stack.pop() + " ");

}

}

(a) Write the method’s running time in big-Oh notation.

(b) Suppose the method is passed the following stack:

top [10, 20, 30] bottom

Write the method’s output in this case.

4

Question 5 (10 points)

Complete the following method named twice that accepts a queue of integers as a parameter
and replaces every element with two copies of itself. For example, if a queue named q

stores [1, 2, 3], the call of twice(q) should change it to store [1, 1, 2, 2, 3, 3].
Constraints: Do not use any auxiliary collections as storage.

Rules:

• Do not use any auxiliary collections (arrays, ArrayLists, Queues, etc.) as storage.

• You may only use the following Queue methods: add(e), remove(), peek(), size(), and
isEmpty().

• Do not use an enhanced for loop (aka for-each loop).

public static void twice(Queue <String > queue) {

}

5

Question 6 (10 points)

Suppose that a deque is implemented using a circular array, aka a ring buffer. Assume that
the deque starts with capacity 5 and that it doubles its capacity when an element is added
to a full deque. Assume that when an element is removed from the deque, the array element
where it resided is set to null.

At each of the points indicated below,

• Write the state of the deque’s internal array.

• State the values of indexOfFirst and indexOfLast.

Deque <Integer > deque = new ArrayDeque <>();

deque.addLast (10);

deque.addFirst (20);

deque.addFirst (30);

deque.addLast (40);

deque.addLast (50);

// Point A:

deque.addFirst (60);

deque.addFirst (70);

// Point B:

for (int i = 0; i < 6; i++) {

deque.removeLast ();

}

// Point C:

6

Question 7 (8 points)

Draw a diagram illustrating the internal state of the HashMap immediately after the following
code runs.

Map <Integer , Integer > map = new HashMap <>();

map.put(13, 10);

map.put(15, 10);

map.put(13, 5);

map.put(18, 15);

map.put(23, 6);

map.put(-3, 7);

map.remove (6);

map.remove (15);

Additionally, write the final size, capacity, and load factor.
Assume that the initial capacity is 5. Assume that we increase the capacity when the

load factor is > 0.5, and that we double the capacity (not 2 * capacity + 1). Note: the
order of the entries within each “bucket” doesn’t matter.

Assume that the hash function takes a key and returns Math.abs(key) % capacity.

7

Question 8 (6 points)

Consider the following method:

public static void mystery(SequencedMap <String , Integer > map) {

SequencedSet <Integer > set = new LinkedHashSet <>();

for (String s : map.keySet ()) {

set.add(map.get(s));

}

System.out.println(set);

}

(a) Write the method’s running time in big-Oh notation.

(b) Suppose the method is passed the following map:

{f=40, d=20, c=40, e=30, b=30, a=20}

Write the method’s output in this case.

Question 9 (6 points)

Consider the following method:

public static void mystery(int n) {

SequencedSet <Integer > set = new LinkedHashSet <>();

for (int i = 1; i <= n * 2; i++) {

set.add(i);

}

for (Iterator <Integer > iter = set.iterator (); iter.hasNext ();) {

System.out.print(iter.next() + " ");

if (iter.hasNext ()) {

iter.next();

}

}

}

(a) Write the method’s running time in big-Oh notation.

(b) Suppose the method is passed the value 5. Write the method’s output in this case.

8

Question 10 (12 points)

Complete the following method. The method should return the number of elements in the
provided collection that have exactly the provided frequency. For example, the call

frequencyCount(List.of("a", "c", "b", "a", "a"), 1)

should return 2, since there are two elements, namely "b" and "c", that have a frequency
of 1. If the second argument would be 2, the method would return 0, since no element has
a frequency of 2. If the second argument would be 3, the method would return 1.

Your method must run in O(n) time. Tip: use a Map.

public static int frequencyCount(Collection <String > coll ,

int frequency) {

}

9

Question 11 (8 points)

Suppose we have the following class:

public class BinaryTreeNode <E> {

public E data;

public BinaryTreeNode <E> left , right;

}

Complete the following method. The method should determine whether the tree rooted
at the given node contains e. You may assume that no element is null and that e isn’t null.

public static <E> boolean contains(BinaryTreeNode <E> root , E e) {

}

Question 12 (8 points)

For the above tree, write the following traversals:

(a) preorder

(b) inorder

(c) postorder

(d) level-order

10

