CISC 3130 Final Exam (Section MY9)

December 16, 2024

Name:

Question 1 (12.5 points)

(a) For the following array, write the state of the array after each of the first three passes
of selection sort. (That is, write what the array looks like immediately after the first
pass, then write what it looks like immediately after the second pass, and then write
what it looks like immediately after the third pass.)

{32, 87, 94, 12, 72, 25, 65, 73}

(b) Repeat, using bubble sort. (Again, only the first three passes.)
{32, 87, 94, 12, 72, 25, 65, 73}

(c¢) Repeat, using insertion sort. (Again, only the first three passes.)

{32, 87, 94, 12, 72, 25, 65, 73}

(d) Trace the complete execution of merge sort. (Continue until the array is fully sorted,
not just three passes.)

{32, 87, 94, 12, 72, 25, 65, 73}

(e) Trace the complete execution of quick sort. (Continue until the array is fully sorted,
not just three passes.) When choosing a pivot, always choose the first element of the

relevant subarray.

{32, 87, 94, 12, 72, 25, 65, 73}

Question 2 (8 points)

(a) Here is an array that stores the elements of a heap: [15, 8, 13, 7, 5, 3, 4, 6, 1]. Write
these elements in tree form. (1 point)

(b) Continuing from part a, suppose we add 12 to the heap. Show what the tree looks like
now. (3 points)

(c¢) Continuing from part b, suppose we remove the root (the max) from the heap. Show
what the tree looks like now. (3 points)

(d) Continuing from part ¢, now write the elements of the heap as an array. (1 point)

Question 3 (8 points)

For the above tree, write the nodes:

(a) in preorder.

(b) in postorder.

(c) in inorder.

(d) in level-order.

Question 4 (4 points)

Suppose we start with an empty binary search tree and add the following elements, in the
following order: 48, 58, 92, 51, 77, 17, 10, 23. Draw a diagram showing what the tree looks
like now.

Question 5 (5 points)

Suppose that a deque is implemented using a circular array, aka a ring buffer. Assume that
the deque starts with capacity 5 and that it doubles its capacity when an element is added
to a full deque. Assume that when an element is removed from the deque, the array element
where it resided is set to null.

At each of the points indicated below,

e Write the state of the deque’s internal array.

e State the values of indexOfFirst and indexOfLast.

Deque<Integer> deque = new ArrayDeque<>();
deque.addFirst (10) ;

deque .addLast (20) ;

deque.addLast (30) ;

deque.addFirst (40) ;

deque .addFirst (50) ;

// Point A:

deque .addLast (60) ;
deque .addLast (70) ;

// Point B:

for (int i = 0; i < 6; i++) {
deque.removeFirst () ;

}

// Point C:

Question 6 (5 points)

Draw a diagram illustrating the internal state of the HashMap immediately after the following
code runs.

Map<Integer , Integer> map = new HashMap<>();
map .put (13, 10);

map .put (15, 10);

map . put (13, 5);

map . put (18, 15);

map .put (23, 6);

map .put (-26, 7);

map . remove (26) ;

map .remove (15) ;

Additionally, write the final size, capacity, and load factor.

Assume that the initial capacity is 5. Assume that we increase the capacity when the
load factor is > 0.5, and that we double the capacity (not 2 * capacity + 1).

The order of the entries within each “bucket” doesn’t matter.

Assume that the hash function takes a key and returns Math.abs(key) % capacity.

Question 7 (19.5 points)

Consider the following interface:

public interface GrabBag<E> {
void insert(E item) ;
E sample ();
E remove () ;

3

A GrabBag represents a bag from which you can grab a random item.
e insert(item): adds item to the grab bag.

e sample(): returns, but does not remove, a random item from the grab bag. The user
should not be able to determine ahead of time which item will be returned.

e remove(): removes and returns a random item from the grab bag. The user should not
be able to determine ahead of time which item will be removed.

Write a concrete class that implements the above interface. Use a List to store the
elements.

For full credit, the running time of each method should be O(1). If your methods are
correct but less efficient than O(1), you will still get most of the credit.

Note: The Random class has a no-arg constructor, Random(). It has an instance method,
nextInt (int max), that returns a random int between 0 (inclusive) and max (exclusive). For
example, if rand refers to a Random object, then rand.nextInt (4) returns 0, 1, 2, or 3.

Note: You may omit all import statements.

Question 8 (6 points)

For each of the following, write a line of code that creates a JCF collection. Make sure to
use an appropriate interface as the variable type.

(a) We want to store Strings and be able remove the minimum element in less than linear
time; we also wish to allow duplicates.

(b) We want to store integers in a list with efficient add and remove at front (but we also
want to use other list operations).

(c) We want to store associations between keys (unique integers) and values (Strings), and
we want to be able to access them in sorted key order.

(d) We want to store Strings without duplicates but we want to be able to access them in
insertion order.

Question 9 (5 points)

Consider the following method:

public static Set<String> mystery(Map<String,
new TreeSet<>();

Set<String> set =

for (String s : map.keySet()) {
set.add(map.get(s));

3

return set;

String> map) {

(a) Assuming that the type of map passed in is LinkedHashMap, what is the running time

of the method in big-Oh notation, where n is map.size()?

(b) Suppose the method is passed the following map:

{f=z, d=x, e=y, b=y, c=z, a=x}

Write the elements of the returned Set in proper order

Question 10 (7 points)

Write the output of the following code:

Deque<Integer> stack =
stack.push (7);
stack.push (10) ;

System.out.print (stack.
System.out.print (stack.

stack.push (3);
stack.push (5) ;

System.out.print (stack.
System.out.print (stack.
System.out.print (stack.

stack.push (8) ;
System.out.print (stack
System.out.print (stack

new LinkedList<>();

peek() + n u);
pop() + " u);

pop() + " u);
size() + n u);
peek() + n u);

.pop() + " u);
.pop() + " u);

10

Question 11 (8 points)
For each of the following pieces of code, write the running time in big-Oh notation:

(a) int sum = N;
for (int i = 0; i < 1000000; i++) {
for (int j = 1; j <= i; j++) {
sum += N;
}
for (int j
sum += N;

1; j <= i; j++) {

for (int j
sum += N;

|
-
.
AN
]

i; j++) A

(b) int sum = 0
for (int i 1; 1 <= N - 2; i++) {
for (int j = 1; j <= 1i + 4; j++) {

” -

sum++;
}
sum++;
}
(¢c) int sum = O

|| -

~

for (int i 1; 1 <= N; i++)
for (int j = 1; j <= N % N; j++) {
sum++;

}
for (int j
sum++;

Il
—

j <= 100; j++) {

}
for (int j
sum++;

I
—

j <= N; j++) {

¥

sum++;

(d) int sum = O
for (int i 1; i <= N; i++) {
for (int j = 1; j <= 100; j++) {
sum++;

" -

}

11

Question 12 (12 points)

Suppose we have the following records:

record Name (String first, String last) {}
record Person(Name name, int age) {}

Recall that a record has public accessor methods with the same names as its fields. For
example, the Person record has a method age() that returns the value of the age field.
Suppose we have a List<Person> named people. Solve the following problems using
streams. Do not use loops or recursion.

(a) Print the average age of all people who are above the age of 30. (If it doesn’t exist,
print nothing.)

(b) Print the number of distinct first names in the list. For example, if the first names in
the list are Jane, Adam, Jane, Jane, Adam, print 2.

(c) Print all the people in the list, sorted by age.

(d) Create a Map<Integer, List<Person>> that classifies people by age.

12

Lambdas and streams reference (read only if needed)

Kinds of lambda expressions:

e function: one input, one output

predicate: one input, one boolean output

binary operator: two inputs, one output, all of the same type
e consumer: one input, no returned output
e comparator: two inputs of same type, one int output
Intermediate stream operations of all streams:
e filter(predicate)

e map(function)

distinct()

sorted()
e limit(size)
Intermediate operations specific to Stream:
e sorted(comparator)
e mapTolnt(function) [returns an IntStream; the provided function must be int-returning]
Terminal operations of all streams:
e count()
e forEach(consumer)
e reduce(initial, binaryOperator)
e findAny() [returns an optional]
e toArray()
Terminal operations specific to Stream:
e toList()
e min(comparator) [returns an optional]
e max(comparator) [returns an optionall

e collect(collector)

13

Terminal operations specific to IntStream:
e sum()
e average() [returns an optional]
e min() [returns an optional]
e max() [returns an optional]

The collect method takes a Collector specifying how the elements of the stream should be
collected. To easily create a Collector, we can use the following methods of the Collectors
class:

e toSet()

e joining()

e joining(String delimiter)
e groupingBy(function)

Some terminal operations return an Optional or Optionallnt. Here are some methods of all
optionals:

e orElse(otherValue)
e orElseThrow()

e ifPresent(consumer)

14

