
CISC 3130 Final Exam (Section TY9)

December 19, 2024

Name:

1



Question 1 (12.5 points)

(a) For the following array, write the state of the array after each of the first three passes
of selection sort. (That is, write what the array looks like immediately after the first
pass, then write what it looks like immediately after the second pass, and then write
what it looks like immediately after the third pass.)

{32, 87, 94, 12, 72, 25, 65, 73}

(b) Repeat, using bubble sort. (Again, only the first three passes.)

{32, 87, 94, 12, 72, 25, 65, 73}

(c) Repeat, using insertion sort. (Again, only the first three passes.)

{32, 87, 94, 12, 72, 25, 65, 73}

2



(d) Trace the complete execution of merge sort. (Continue until the array is fully sorted,
not just three passes.)

{32, 87, 94, 12, 72, 25, 65, 73}

(e) Trace the complete execution of quick sort. (Continue until the array is fully sorted,
not just three passes.) When choosing a pivot, always choose the first element of the
relevant subarray.

{32, 87, 94, 12, 72, 25, 65, 73}

3



Question 2 (8 points)

(a) Here is an array that stores the elements of a heap: [15, 8, 13, 7, 5, 3, 4, 6, 1]. Write
these elements in tree form. (1 point)

(b) Continuing from part a, suppose we add 12 to the heap. Show what the tree looks like
now. (3 points)

(c) Continuing from part b, suppose we remove the root (the max) from the heap. Show
what the tree looks like now. (3 points)

(d) Continuing from part c, now write the elements of the heap as an array. (1 point)

4



Question 3 (8 points)

For the above tree, write the nodes:

(a) in preorder.

(b) in postorder.

(c) in inorder.

(d) in level-order.

Question 4 (4 points)

Suppose we start with an empty binary search tree and add the following elements, in the
following order: 48, 58, 92, 51, 77, 17, 10, 23. Draw a diagram showing what the tree looks
like now.

5



Question 5 (5 points)

Suppose that a deque is implemented using a circular array, aka a ring buffer. Assume that
the deque starts with capacity 5 and that it doubles its capacity when an element is added
to a full deque. Assume that when an element is removed from the deque, the array element
where it resided is set to null.

At each of the points indicated below,

• Write the state of the deque’s internal array.

• State the values of indexOfFirst and indexOfLast.

Deque <Integer > deque = new ArrayDeque <>();

deque.addFirst (10);

deque.addLast (20);

deque.addLast (30);

deque.addFirst (40);

deque.addFirst (50);

// Point A:

deque.addLast (60);

deque.addLast (70);

// Point B:

for (int i = 0; i < 6; i++) {

deque.removeFirst ();

}

// Point C:

6



Question 6 (5 points)

Draw a diagram illustrating the internal state of the HashMap immediately after the following
code runs.

Map <Integer , Integer > map = new HashMap <>();

map.put(13, 10);

map.put(15, 10);

map.put(13, 5);

map.put(18, 15);

map.put(23, 6);

map.put(-26, 7);

map.remove (26);

map.remove (15);

Additionally, write the final size, capacity, and load factor.
Assume that the initial capacity is 5. Assume that we increase the capacity when the

load factor is > 0.5, and that we double the capacity (not 2 * capacity + 1).
The order of the entries within each “bucket” doesn’t matter.
Assume that the hash function takes a key and returns Math.abs(key) % capacity.

7



Question 7 (19.5 points)

Write a class named VoteCounter. A VoteCounter object should keep track of how many
votes were cast for each person. It should have the following instance methods:

• public void castVote(String name): records one vote for the provided name. The
name could be any String; there is no predetermined list of candidates.

• public Set<String> getWinners(): returns a set of all the winners. The set may
be empty (if no votes were cast), or may contain exactly one name (if one person got
the largest number of votes), or may contain multiple names (if a few candidates got
the largest number of votes).

For example, suppose Alice got two votes, Bob got one vote, and James got two votes,
and nobody else received votes. Then the largest number of votes anyone got was 2,
so the returned set should contain Alice and James, and nobody else. The order of the
elements in the set doesn’t matter.

• public double getPercentage(String name): returns the percentage of votes that
were cast for the specified name. This is the number of votes cast for that name divided
by the total number of votes that were cast. The result should be a number between
0 and 1, inclusive, such as 0.5 (meaning 50%). For example, if we have

VoteCounter vc = new VoteCounter ();

vc.castVote("Alice");

vc.castVote("Bob");

vc.castVote("Bob");

then we should get the following results:

– vc.getPercentage("Alice") should be 0.333...

– vc.getPercentage("Bob") should be 0.666...

– vc.getPercentage("James") should be 0.0

(The exact number of digits after the decimal point doesn’t matter.)

Tips: Use a Map as a field. You may use additional fields if you wish. You may write a
constructor, if you wish. You may omit all import statements.

8



Question 8 (6 points)

For each of the following, write a line of code that creates a JCF collection. Make sure to
use an appropriate interface as the variable type.

(a) We want to store Strings and be able remove the minimum element in less than linear
time; we also wish to allow duplicates.

(b) We want to store integers in a list with efficient add and remove at front (but we also
want to use other list operations).

(c) We want to store associations between keys (unique integers) and values (Strings), and
we want to be able to access them in sorted key order.

(d) We want to store Strings without duplicates but we want to be able to access them in
insertion order.

9



Question 9 (5 points)

Consider the following method:

public static Set <String > mystery(Map <String , String > map) {

Set <String > set = new TreeSet <>();

for (String s : map.keySet ()) {

set.add(map.get(s));

}

return set;

}

(a) Assuming that the type of map passed in is LinkedHashMap, what is the running time
of the method in big-Oh notation, where n is map.size()?

(b) Suppose the method is passed the following map:

{f=z, d=x, e=y, b=y, c=z, a=x}

Write the elements of the returned Set in proper order.

Question 10 (7 points)

Write the output of the following code:

Deque <Integer > stack = new LinkedList <>();

stack.push (7);

stack.push (10);

System.out.print(stack.peek() + " ");

System.out.print(stack.pop() + " ");

stack.push (3);

stack.push (5);

System.out.print(stack.pop() + " ");

System.out.print(stack.size() + " ");

System.out.print(stack.peek() + " ");

stack.push (8);

System.out.print(stack.pop() + " ");

System.out.print(stack.pop() + " ");

10



Question 11 (8 points)

For each of the following pieces of code, write the running time in big-Oh notation:

(a) int sum = N;

for (int i = 0; i < 1000000; i++) {

for (int j = 1; j <= i; j++) {

sum += N;

}

for (int j = 1; j <= i; j++) {

sum += N;

}

for (int j = 1; j <= i; j++) {

sum += N;

}

}

(b) int sum = 0;

for (int i = 1; i <= N - 2; i++) {

for (int j = 1; j <= i + 4; j++) {

sum ++;

}

sum ++;

}

(c) int sum = 0;

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N * N; j++) {

sum ++;

}

for (int j = 1; j <= 100; j++) {

sum ++;

}

for (int j = 1; j <= N; j++) {

sum ++;

}

sum ++;

}

(d) int sum = 0;

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= 100; j++) {

sum ++;

}

}

11



Question 12 (12 points)

Suppose we have the following records:

record Name(String first , String last) {}

record Person(Name name , int age) {}

Recall that a record has public accessor methods with the same names as its fields. For
example, the Person record has a method age() that returns the value of the age field.
Suppose we have a List<Person> named people. Solve the following problems using
streams. Do not use loops or recursion.

(a) Print the average age of all people who are above the age of 30. (If it doesn’t exist,
print nothing.)

(b) Print the number of distinct first names in the list. For example, if the first names in
the list are Jane, Adam, Jane, Jane, Adam, print 2.

(c) Print all the people in the list, sorted by age.

(d) Create a Map<Integer, List<Person>> that classifies people by age.

12



Lambdas and streams reference (read only if needed)

Kinds of lambda expressions:

• function: one input, one output

• predicate: one input, one boolean output

• binary operator: two inputs, one output, all of the same type

• consumer: one input, no returned output

• comparator: two inputs of same type, one int output

Intermediate stream operations of all streams:

• filter(predicate)

• map(function)

• distinct()

• sorted()

• limit(size)

Intermediate operations specific to Stream:

• sorted(comparator)

• mapToInt(function) [returns an IntStream; the provided function must be int-returning]

Terminal operations of all streams:

• count()

• forEach(consumer)

• reduce(initial, binaryOperator)

• findAny() [returns an optional]

• toArray()

Terminal operations specific to Stream:

• toList()

• min(comparator) [returns an optional]

• max(comparator) [returns an optional]

• collect(collector)

13



Terminal operations specific to IntStream:

• sum()

• average() [returns an optional]

• min() [returns an optional]

• max() [returns an optional]

The collect method takes a Collector specifying how the elements of the stream should be
collected. To easily create a Collector, we can use the following methods of the Collectors
class:

• toSet()

• joining()

• joining(String delimiter)

• groupingBy(function)

Some terminal operations return an Optional or OptionalInt. Here are some methods of all
optionals:

• orElse(otherValue)

• orElseThrow()

• ifPresent(consumer)

14


